Categories
複數

複數(四)有理化

當分母為 虛數數值不等於零的複數, 以共軛作擴分母

例子:

1/(2+3i) = 1/(2 + 3i) x (2 – 3i)/(2 – 3i)

= [1 x (2 + 3i)] / [ (2 + 3i) x (2 – 3i)]

= [2 + 3i] / [ 2×2 -2x3i + 2x3i – 3ix3i]

= [2 + 3i] / [ 4 + 0 – 9(i x i)]

= [2 + 3i] / [ 4 – 9x (-1)]

= [2 + 3i] / [ 4 + 9]

= 2/13 + (3/13) i

Categories
複數

複數(三)乘法

例子:

(3 + 2i) x (4 + 5i) = 3 x (4 + 5i) + 2i x (4 + 5i)

= 12 + 15i + 8i + 10(i x i)

= 12 + 23i + 10 x (-1)

= 12 + 23i – 10

= 2 + 23i

Categories
複數

複數(二)共軛

共軛 Conjugate Pair

實數部份相同, 虛數部份則正負號相反

例子1:

3 + 4i 的共軛 是 3 – 4i

例子2:

3 + 5i 的共軛 是 3 – 5i

例子3:

8 + 5i 的共軛 是 8 – 5i

Categories
複數

複數(一)

實數與虛數單位i, i x i = -1

例子1:

3i x i = 3 x (i x i) = 3 x (-1) = -3

例子2:

(2i + 5) + 6i = 5 + (2i + 6i) = 5 + 8i

例子3:

(2i + 5) – 6i = 5 + (2i – 6i) = 5 – 4i